Source code for netspresso.compressor.client.utils.enum

from enum import Enum
from typing import Literal


[docs]class Task(str, Enum): IMAGE_CLASSIFICATION = "image_classification" OBJECT_DETECTION = "object_detection" IMAGE_SEGMENTATION = "image_segmentation" SEMANTIC_SEGMENTATION = "semantic_segmentation" INSTANCE_SEGMENTATION = "instance_segmentation" PANOPTIC_SEGMENTATION = "panoptic_segmentation" OTHER = "other" @classmethod def create_literal(cls): return Literal[ "image_classification", "object_detection", "image_segmentation", "semantic_segmentation", "instance_segmentation", "panoptic_segmentation", "other", ]
[docs]class Framework(str, Enum): TENSORFLOW_KERAS = "tensorflow_keras" PYTORCH = "pytorch" ONNX = "onnx" @classmethod def create_literal(cls): return Literal["tensorflow_keras", "pytorch", "onnx"]
[docs]class Extension(str, Enum): H5 = "h5" ZIP = "zip" PT = "pt" ONNX = "onnx" @classmethod def create_literal(cls): return Literal["h5", "zip", "pt", "onnx"]
[docs]class CompressionMethod(str, Enum): PR_L2 = "PR_L2" PR_GM = "PR_GM" PR_NN = "PR_NN" PR_ID = "PR_ID" FD_TK = "FD_TK" FD_CP = "FD_CP" FD_SVD = "FD_SVD" @classmethod def create_literal(cls): return Literal["PR_L2", "PR_GM", "PR_NN", "PR_ID", "FD_TK", "FD_CP", "FD_SVD"]
[docs]class RecommendationMethod(str, Enum): SLAMP = "slamp" VBMF = "vbmf" @classmethod def create_literal(cls): return Literal["slamp", "vbmf"]
[docs]class OriginFrom(str, Enum): CUSTOM = "custom" NPMS = "npms" @classmethod def create_literal(cls): return Literal["custom", "npms"]
[docs]class Policy(str, Enum): SUM = "sum" AVERAGE = "average" BACKWARD = "backward" @classmethod def create_literal(cls): return Literal["sum", "average", "backward"]
[docs]class GroupPolicy(str, Enum): SUM = "sum" AVERAGE = "average" COUNT = "count" NONE = "none" @classmethod def create_literal(cls): return Literal["sum", "average", "count", "none"]
[docs]class LayerNorm(str, Enum): NONE = "none" STANDARD_SCORE = "standard_score" TSS_NORM = "tss_norm" LINEAR_SCALING = "linear_scaling" SOFTMAX_NORM = "softmax_norm" @classmethod def create_literal(cls): return Literal["none", "standard_score", "tss_norm", "linear_scaling", "softmax_norm"]
task_literal = Task.create_literal() framework_literal = Framework.create_literal() extension_literal = Extension.create_literal() compression_literal = CompressionMethod.create_literal() recommendation_literal = RecommendationMethod.create_literal() originfrom_literal = OriginFrom.create_literal() policy_literal = Policy.create_literal() grouppolicy_literal = GroupPolicy.create_literal() layernorm_literal = LayerNorm.create_literal()