Convert

You can use LaunchX converter to automatically convert the AI model’s framework to the target framework.

Conversion case

_images/converting_case.png
  1. ONNX to TensorRT

  2. ONNX to TensorFlow Lite

  3. ONNX to OpenVINO

  4. TensorFlow-Keras to TensorFlow Lite

Compatible model

The input layer of the uploaded model should be as follows.

_images/convert_compatible_model.png
  • Only single-input models are supported.

  • The four-dimensional array structure of images should be organized Batch, Number of Channels, Height, and Width.

  1. Batch size: The number of combined input datasets that the model processes simultaneously.

  2. Channel: 3 for RGB or BGR and 1 for Grayscale.

  3. Input size: In computer vision tasks, input size refers to the size of the input images.

ONNX to TensorRT

Target Device

JetPack version

Input data type

Batch size

Channel

Input size

Output data type

NVIDIA Jetson Nano

4.6, 4.4.1

FP32

1~4 (Static), Dynamic

1~4

height, width

FP16

NVIDIA Jetson Xavier NX

5.0.2, 4.6

FP32

1~4 (Static), Dynamic

1~4

height, width

FP16

NVIDIA Jetson TX2

4.6

FP32

1~4 (Static), Dynamic

1~4

height, width

FP16

NVIDIA Jetson AGX Xavier

4.6

FP32

1~4 (Static), Dynamic

1~4

height, width

FP16

NVIDIA Jetson AGX Orin

5.0.1

FP32

1~4 (Static), Dynamic

1~4

height, width

FP16

NVIDIA Jetson Orin Nano

6.0

FP32

1~4 (Static), Dynamic

1~4

height, width

FP16

NVIDIA T4

None

FP32

1~4 (Static), Dynamic

1~4

height, width

FP16

ONNX to TFlite

Input data type

Batch size

Channel

Input size

Output data type

FP32

1~4 (Static), Dynamic

1~4

height, width

FP16, INT8

ONNX to OpenVino

Input data type

Batch size

Channel

Input size

Output data type

FP32

1~4 (Static), Dynamic

1~4

height, width

FP16

TensorFlow to TensorFlowLite

Input data type

Batch size

Channel

Input size

Output data type

FP32

1~4 (Static), Dynamic

1~4

height, width

FP16, INT8