Convert
You can use LaunchX converter to automatically convert the AI model’s framework to the target framework.
Conversion case
Compatible model
The input layer of the uploaded model should be as follows.
Only single-input models are supported.
The four-dimensional array structure of images should be organized Batch, Number of Channels, Height, and Width.
Batch size: The number of combined input datasets that the model processes simultaneously.
Channel: 3 for RGB or BGR and 1 for Grayscale.
Input size: In computer vision tasks, input size refers to the size of the input images.
ONNX to TensorRT
Target Device |
JetPack version |
Input data type |
Batch size |
Channel |
Input size |
Output data type |
---|---|---|---|---|---|---|
NVIDIA Jetson Nano |
4.6, 4.4.1 |
FP32 |
1~4 (Static), Dynamic |
1~4 |
height, width |
FP16 |
NVIDIA Jetson Xavier NX |
5.0.2, 4.6 |
FP32 |
1~4 (Static), Dynamic |
1~4 |
height, width |
FP16 |
NVIDIA Jetson TX2 |
4.6 |
FP32 |
1~4 (Static), Dynamic |
1~4 |
height, width |
FP16 |
NVIDIA Jetson AGX Xavier |
4.6 |
FP32 |
1~4 (Static), Dynamic |
1~4 |
height, width |
FP16 |
NVIDIA Jetson AGX Orin |
5.0.1 |
FP32 |
1~4 (Static), Dynamic |
1~4 |
height, width |
FP16 |
NVIDIA Jetson Orin Nano |
6.0 |
FP32 |
1~4 (Static), Dynamic |
1~4 |
height, width |
FP16 |
NVIDIA T4 |
None |
FP32 |
1~4 (Static), Dynamic |
1~4 |
height, width |
FP16 |
ONNX to TFlite
Input data type |
Batch size |
Channel |
Input size |
Output data type |
---|---|---|---|---|
FP32 |
1~4 (Static), Dynamic |
1~4 |
height, width |
FP16, INT8 |
ONNX to OpenVino
Input data type |
Batch size |
Channel |
Input size |
Output data type |
---|---|---|---|---|
FP32 |
1~4 (Static), Dynamic |
1~4 |
height, width |
FP16 |
TensorFlow to TensorFlowLite
Input data type |
Batch size |
Channel |
Input size |
Output data type |
---|---|---|---|---|
FP32 |
1~4 (Static), Dynamic |
1~4 |
height, width |
FP16, INT8 |