TFLite
The models in NetsPresso Trainer can be converted to TFLite format by NetsPresso's Launcher module. The converted TFLite model's performance can be measured on actual boards using NetsPresso's Benchmarker module. For more detailed information, please refer to NetsPresso .
Note that the latency value only measures the time for the model's computation and does not include the time on data preprocessing or postprocessing.
Alif Ensemble E7 DevKit Gen 2
Cortex-M55 + Ethos-U55
Ethosu delegates
INT8
Task
Model
Input shape
Classes
Latency (ms)
GPU Memory (MB)
CPU Memory (MB)
Ramarks
Classification
MixNet-s
(224, 224)
3
46.0708
-
-
onnx_opset=13
Classification
MobileNetV3-small
(224, 224)
3
13.0257
-
-
onnx_opset=13
NXP iMX93
Cortex-A55 + Ethos-U65
Ethosu delegates
INT8
Task
Model
Input shape
Classes
Latency (ms)
GPU Memory (MB)
CPU Memory (MB)
Ramarks
Classification
EfficientFormer-l1
(224, 224)
3
21.6117
-
onnx_opset=13
Classification
MixNet-s
(224, 224)
3
20.1424
-
onnx_opset=13
Classification
MixNet-m
(224, 224)
3
27.7012
-
onnx_opset=13
Classification
MixNet-l
(224, 224)
3
37.3885
-
onnx_opset=13
Classification
MobileNetV3-small
(224, 224)
3
3.21802
-
onnx_opset=13
Classification
MobileNetV3-large
(224, 224)
3
7.05413
-
onnx_opset=13
Classification
MovileViT-s
-
-
-
-
-
Classification
ResNet18
(224, 224)
3
22.8633
-
onnx_opset=13
Classification
ResNet34
-
-
-
-
-
Classification
ResNet50
(224, 224)
3
38.5456
-
onnx_opset=13
Classification
ViT-tiny
(224, 224)
3
412.846
-
onnx_opset=13
Segmentation
PIDNet-s
(512, 512)
35
87.6305
-
onnx_opset=13
Segmentation
SegFormet-b0
(512, 512)
35
2274.03
-
onnx_opset=13
Detection
YOLOX-s
(640, 640)
4
133.775
-
onnx_opset=13
Detection
YOLOX-m
(640, 640)
4
279.712
-
onnx_opset=13
Detection
YOLOX-l
(640, 640)
4
503.778
-
onnx_opset=13
Raspberry Pi 5
FP16
Task
Model
Input shape
Classes
Latency (ms)
GPU Memory (MB)
CPU Memory (MB)
Ramarks
Classification
EfficientFormer-l1
(224, 224)
3
164.574
-
115.844
onnx_opset=13
Classification
MixNet-s
(224, 224)
3
49.5337
-
38.4688
onnx_opset=13
Classification
MixNet-m
(224, 224)
3
78.0415
-
64.1562
onnx_opset=13
Classification
MixNet-l
(224, 224)
3
117.185
-
96.0156
onnx_opset=13
Classification
MobileNetV3-small
(224, 224)
3
4.077
-
20.6875
onnx_opset=13
Classification
MobileNetV3-large
(224, 224)
3
15.2487
-
55.2188
onnx_opset=13
Classification
MovileViT-s
(256, 256)
3
228.259
-
115.234
onnx_opset=13
Classification
ResNet18
(224, 224)
3
55.2718
-
120.078
onnx_opset=13
Classification
ResNet34
(224, 224)
3
98.0536
-
217.828
onnx_opset=13
Classification
ResNet50
(224, 224)
3
130.835
-
278.656
onnx_opset=13
Classification
ViT-tiny
(224, 224)
3
305.55
-
56.0
onnx_opset=13
Segmentation
PIDNet-s
(512, 512)
35
133.98
-
119.578
onnx_opset=13
Segmentation
SegFormet-b0
(512, 512)
35
1199.34
-
354.812
onnx_opset=13
Detection
YOLOX-s
(640, 640)
4
418.725
-
169.594
onnx_opset=13
Detection
YOLOX-m
(640, 640)
4
1176.87
-
357.891
onnx_opset=13
Detection
YOLOX-l
(640, 640)
4
2355.4
-
666.844
onnx_opset=13
INT8
Task
Model
Input shape
Classes
Latency (ms)
GPU Memory (MB)
CPU Memory (MB)
Ramarks
Classification
EfficientFormer-l1
(224, 224)
3
30.6753
-
21.2969
onnx_opset=13
Classification
MixNet-s
(224, 224)
3
80.8769
-
20.4375
onnx_opset=13
Classification
MixNet-m
(224, 224)
3
82.4275
-
32.3906
onnx_opset=13
Classification
MixNet-l
(224, 224)
3
73.1796
-
43.875
onnx_opset=13
Classification
MobileNetV3-small
(224, 224)
3
6.88714
-
3.53125
onnx_opset=13
Classification
MobileNetV3-large
(224, 224)
3
78.3648
-
11.5156
onnx_opset=13
Classification
MovileViT-s
(256, 256)
3
224.878
-
30.3281
onnx_opset=13
Classification
ResNet18
-
-
-
-
-
Classification
ResNet34
-
-
-
-
-
Classification
ResNet50
-
-
-
-
-
Classification
ViT-tiny
(224, 224)
3
49.8123
-
12.0469
onnx_opset=13
Segmentation
PIDNet-s
(512, 512)
35
39.093
-
36.1719
onnx_opset=13
Segmentation
SegFormet-b0
(512, 512)
35
649.016
-
273.594
onnx_opset=13
Detection
YOLOX-s
(640, 640)
4
100.01
-
42.25
onnx_opset=13
Detection
YOLOX-m
(640, 640)
4
217.008
-
87.5
onnx_opset=13
Detection
YOLOX-l
(640, 640)
4
446.359
-
153.625
onnx_opset=13
Raspberry Pi 4B
FP16
Task
Model
Input shape
Classes
Latency (ms)
GPU Memory (MB)
CPU Memory (MB)
Ramarks
Classification
EfficientFormer-l1
(224, 224)
3
439.871
-
119.438
onnx_opset=13
Classification
MixNet-s
(224, 224)
3
108.501
-
40.3906
onnx_opset=13
Classification
MixNet-m
(224, 224)
3
148.488
-
65.3008
onnx_opset=13
Classification
MixNet-l
(224, 224)
3
231.303
-
98.332
onnx_opset=13
Classification
MobileNetV3-small
(224, 224)
3
14.1937
-
21.5352
onnx_opset=13
Classification
MobileNetV3-large
(224, 224)
3
43.9362
-
55.5117
onnx_opset=13
Classification
MovileViT-s
(256, 256)
3
417.108
-
117.504
onnx_opset=13
Classification
ResNet18
(224, 224)
3
254.588
-
121.074
onnx_opset=13
Classification
ResNet34
(224, 224)
3
486.278
-
220.734
onnx_opset=13
Classification
ResNet50
(224, 224)
3
556.2
-
281.504
onnx_opset=13
Classification
ViT-tiny
(224, 224)
3
286.019
-
57.5938
onnx_opset=13
Segmentation
PIDNet-s
(512, 512)
35
605.416
-
122.723
onnx_opset=13
Segmentation
SegFormet-b0
(512, 512)
35
2294.5
-
357.348
onnx_opset=13
Detection
YOLOX-s
(640, 640)
4
1488.71
-
171.43
onnx_opset=13
Detection
YOLOX-m
(640, 640)
4
4542.29
-
360.41
onnx_opset=13
Detection
YOLOX-l
(640, 640)
4
10087.7
-
669.797
onnx_opset=13
INT8
Task
Model
Input shape
Classes
Latency (ms)
GPU Memory (MB)
CPU Memory (MB)
Ramarks
Classification
EfficientFormer-l1
(224, 224)
3
80.4513
-
23.1289
onnx_opset=13
Classification
MixNet-s
(224, 224)
3
119.517
-
21.418
onnx_opset=13
Classification
MixNet-m
(224, 224)
3
211.811
-
34.3984
onnx_opset=13
Classification
MixNet-l
(224, 224)
3
276.174
-
45.75
onnx_opset=13
Classification
MobileNetV3-small
(224, 224)
3
18.4982
-
4.19531
onnx_opset=13
Classification
MobileNetV3-large
(224, 224)
3
57.0669
-
12.1953
onnx_opset=13
Classification
MovileViT-s
(256, 256)
3
287.328
-
32.2891
onnx_opset=13
Classification
ResNet18
-
-
-
-
-
Classification
ResNet34
-
-
-
-
-
Classification
ResNet50
-
-
-
-
-
Classification
ViT-tiny
(224, 224)
3
197.057
-
12.3945
onnx_opset=13
Segmentation
PIDNet-s
(512, 512)
35
227.03
-
38.4648
onnx_opset=13
Segmentation
SegFormet-b0
(512, 512)
35
1393.21
-
275.422
onnx_opset=13
Detection
YOLOX-s
(640, 640)
4
533.657
-
46.2852
onnx_opset=13
Detection
YOLOX-m
(640, 640)
4
1468.42
-
87.9766
onnx_opset=13
Detection
YOLOX-l
(640, 640)
4
3133.25
-
154.941
onnx_opset=13
Raspberry Pi 3B PLUS
FP16
Task
Model
Input shape
Classes
Latency (ms)
GPU Memory (MB)
CPU Memory (MB)
Ramarks
Classification
EfficientFormer-l1
(224, 224)
3
1414.44
-
119.656
onnx_opset=13
Classification
MixNet-s
(224, 224)
3
227.58
-
40.5938
onnx_opset=13
Classification
MixNet-m
(224, 224)
3
348.734
-
65.5273
onnx_opset=13
Classification
MixNet-l
(224, 224)
3
564.76
-
98.2148
onnx_opset=13
Classification
MobileNetV3-small
(224, 224)
3
28.9851
-
21.3633
onnx_opset=13
Classification
MobileNetV3-large
(224, 224)
3
114.964
-
55.293
onnx_opset=13
Classification
MovileViT-s
(256, 256)
3
906.407
-
117.707
onnx_opset=13
Classification
ResNet18
(224, 224)
3
473.501
-
121.031
onnx_opset=13
Classification
ResNet34
(224, 224)
3
864.672
-
220.539
onnx_opset=13
Classification
ResNet50
(224, 224)
3
1091.6
-
281.406
onnx_opset=13
Classification
ViT-tiny
(224, 224)
3
841.007
-
57.5156
onnx_opset=13
Segmentation
PIDNet-s
(512, 512)
35
1139.91
-
122.859
onnx_opset=13
Segmentation
SegFormet-b0
(512, 512)
35
5178.05
-
350.0
onnx_opset=13
Detection
YOLOX-s
(640, 640)
4
2881.02
-
171.043
onnx_opset=13
Detection
YOLOX-m
(640, 640)
4
7420.01
-
360.473
onnx_opset=13
INT8
Task
Model
Input shape
Classes
Latency (ms)
GPU Memory (MB)
CPU Memory (MB)
Ramarks
Classification
EfficientFormer-l1
(224, 224)
3
156.684
-
23.0898
onnx_opset=13
Classification
MixNet-s
(224, 224)
3
125.0
-
14.2891
onnx_opset=13
Classification
MixNet-m
(224, 224)
3
224.736
-
23.75
onnx_opset=13
Classification
MixNet-l
(224, 224)
3
281.604
-
32.0352
onnx_opset=13
Classification
MobileNetV3-small
(224, 224)
3
48.3053
-
3.98438
onnx_opset=13
Classification
MobileNetV3-large
(224, 224)
3
79.9677
-
12.1953
onnx_opset=13
Classification
MovileViT-s
(256, 256)
3
463.851
-
32.3008
onnx_opset=13
Classification
ResNet18
-
-
-
-
-
Classification
ResNet34
-
-
-
-
-
Classification
ResNet50
-
-
-
-
-
Classification
ViT-tiny
(224, 224)
3
307.119
-
12.3984
onnx_opset=13
Segmentation
PIDNet-s
(512, 512)
35
406.89
-
38.4805
onnx_opset=13
Segmentation
SegFormet-b0
(512, 512)
35
2811.66
-
275.512
onnx_opset=13
Detection
YOLOX-s
(640, 640)
4
939.852
-
46.3281
onnx_opset=13
Detection
YOLOX-m
(640, 640)
4
2771.37
-
88.0156
onnx_opset=13
Detection
YOLOX-l
(640, 640)
4
5675.15
-
154.891
onnx_opset=13
Raspberry Pi Zero 2 W
FP16
Task
Model
Input shape
Classes
Latency (ms)
GPU Memory (MB)
CPU Memory (MB)
Ramarks
Classification
EfficientFormer-l1
(224, 224)
3
1163.35
-
114.922
onnx_opset=13
Classification
MixNet-s
(224, 224)
3
225.104
-
39.8477
onnx_opset=13
Classification
MixNet-m
(224, 224)
3
315.645
-
63.7773
onnx_opset=13
Classification
MixNet-l
(224, 224)
3
448.629
-
95.4648
onnx_opset=13
Classification
MobileNetV3-small
(224, 224)
3
32.5132
-
23.1523
onnx_opset=13
Classification
MobileNetV3-large
(224, 224)
3
94.6444
-
56.9414
onnx_opset=13
Classification
MovileViT-s
(256, 256)
3
869.398
-
116.02
onnx_opset=13
Classification
ResNet18
(224, 224)
3
441.127
-
120.402
onnx_opset=13
Classification
ResNet34
(224, 224)
3
817.117
-
185.582
onnx_opset=13
Classification
ResNet50
(224, 224)
3
940.785
-
233.328
onnx_opset=13
Classification
ViT-tiny
(224, 224)
3
713.305
-
58.3203
onnx_opset=13
Segmentation
PIDNet-s
(512, 512)
35
942.47
-
116.637
onnx_opset=13
Segmentation
SegFormet-b0
(512, 512)
35
5779.5
-
264.441
onnx_opset=13
Detection
YOLOX-s
(640, 640)
4
2515.49
-
148.547
onnx_opset=13
INT8
Task
Model
Input shape
Classes
Latency (ms)
GPU Memory (MB)
CPU Memory (MB)
Ramarks
Classification
EfficientFormer-l1
(224, 224)
3
248.033
-
23.6562
onnx_opset=13
Classification
MixNet-s
(224, 224)
3
152.92
-
13.2109
onnx_opset=13
Classification
MixNet-m
(224, 224)
3
257.34
-
20.4414
onnx_opset=13
Classification
MixNet-l
(224, 224)
3
340.322
-
28.0742
onnx_opset=13
Classification
MobileNetV3-small
(224, 224)
3
78.6897
-
5.73438
onnx_opset=13
Classification
MobileNetV3-large
(224, 224)
3
132.282
-
13.7188
onnx_opset=13
Classification
MovileViT-s
(256, 256)
3
701.015
-
30.9727
onnx_opset=13
Classification
ResNet18
-
-
-
-
-
Classification
ResNet34
-
-
-
-
-
Classification
ResNet50
-
-
-
-
-
Classification
ViT-tiny
(224, 224)
3
463.293
-
13.2422
onnx_opset=13
Segmentation
PIDNet-s
(512, 512)
35
574.138
-
32.5078
onnx_opset=13
Segmentation
SegFormet-b0
(512, 512)
35
4373.37
-
148.633
onnx_opset=13
Detection
YOLOX-s
(640, 640)
4
1337.21
-
40.3945
onnx_opset=13
Detection
YOLOX-m
(640, 640)
4
3442.01
-
79.5859
onnx_opset=13
Detection
YOLOX-l
(640, 640)
4
7061.52
-
143.648
onnx_opset=13