TensorRT
The models in NetsPresso Trainer can be converted to TensorRT format by NetsPresso's Launcher module. During this process, you can specify the JetPack version. The converted TensorRT model's performance can be measured on actual boards using NetsPresso's Benchmarker module.
Using NetsPresso, you can utilize more various JetPack versions and devices than listed in this document. For more detailed information, please refer to NetsPresso .
Note that the latency value only measures the time for the model's computation and does not include the time on data preprocessing or postprocessing.
JetPack 6.0
Jetson Orin Nano
FP16
Task
Model
Input shape
Classes
Latency (ms)
GPU Memory (MB)
CPU Memory (MB)
Ramarks
Classification
EfficientFormer-l1
(224, 224)
3
4.45334
23.0
-
onnx_opset=13
Classification
MixNet-s
(224, 224)
3
6.33559
12.0
1.0
onnx_opset=13
Classification
MixNet-m
(224, 224)
3
9.07441
16.0
1.0
onnx_opset=13
Classification
MixNet-l
(224, 224)
3
11.4235
23.0
1.0
onnx_opset=13
Classification
MobileNetV3-small
(224, 224)
3
1.56278
4.0
-
onnx_opset=13
Classification
MobileNetV3-large
(224, 224)
3
2.51209
11.0
-
onnx_opset=13
Classification
MovileViT-s
(256, 256)
3
7.13308
18.0
-
Classification
ResNet18
(224, 224)
3
1.99792
23.0
-
onnx_opset=13
Classification
ResNet34
(224, 224)
3
3.48368
42.0
-
onnx_opset=13
Classification
ResNet50
(224, 224)
3
4.80201
48.0
-
onnx_opset=13
Classification
ViT-tiny
(224, 224)
3
3.11549
11.0
-
onnx_opset=13
Segmentation
PIDNet-s
(512, 512)
35
7.32771
25.0
-
onnx_opset=13
Segmentation
SegFormet-b0
(512, 512)
35
22.6924
69.0
-
onnx_opset=13
Detection
YOLOX-s
(640, 640)
4
15.508
29.0
-
onnx_opset=13
Detection
YOLOX-m
(640, 640)
4
32.276
25.0
-
onnx_opset=13
Detection
YOLOX-l
(640, 640)
4
53.4317
69.0
-
onnx_opset=13
JetPack 5.0.1
Jetson AGX Orin
FP16
Task
Model
Input shape
Classes
Latency (ms)
GPU Memory (MB)
CPU Memory (MB)
Ramarks
Classification
EfficientFormer-l1
(224, 224)
3
1.35066
23.0
302.0
onnx_opset=13
Classification
MixNet-s
(224, 224)
3
2.1774
964.0
920.0
onnx_opset=13
Classification
MixNet-m
(224, 224)
3
2.83159
969.0
921.0
onnx_opset=13
Classification
MixNet-l
(224, 224)
3
3.30286
977.0
920.0
onnx_opset=13
Classification
MobileNetV3-small
(224, 224)
3
0.721624
4.0
302.0
onnx_opset=13
Classification
MobileNetV3-large
(224, 224)
3
0.919789
10.0
302.0
onnx_opset=13
Classification
ResNet18
(224, 224)
3
0.520046
23.0
302.0
onnx_opset=13
Classification
ResNet34
(224, 224)
3
0.87017
42.0
301.0
onnx_opset=13
Classification
ResNet50
(224, 224)
3
1.1421
48.0
302.0
onnx_opset=13
Segmentation
PIDNet-s
(512, 512)
35
1.87514
855.0
836.0
onnx_opset=13
Detection
YOLOX-s
(640, 640)
4
3.18338
31.0
301.0
onnx_opset=13
Detection
YOLOX-m
(640, 640)
4
6.2141
68.0
302.0
onnx_opset=13
Detection
YOLOX-l
(640, 640)
4
9.27001
130.0
302.0
onnx_opset=13
JetPack 4.6
Jetson Nano
FP16
Task
Model
Input shape
Classes
Latency (ms)
GPU Memory (MB)
CPU Memory (MB)
Ramarks
Classification
EfficientFormer-l1
(224, 224)
3
20.3864
695.0
601.0
onnx_opset=13
Classification
MixNet-s
(224, 224)
3
22.5372
692.0
603.0
onnx_opset=13
Classification
MixNet-m
(224, 224)
3
32.5569
691.0
602.0
onnx_opset=13
Classification
MixNet-l
(224, 224)
3
42.1082
691.0
602.0
onnx_opset=13
Classification
MobileNetV3-small
(224, 224)
3
5.0241
692.0
603.0
onnx_opset=13
Classification
MobileNetV3-large
(224, 224)
3
11.278
692.0
600.0
onnx_opset=13
Classification
ResNet18
(224, 224)
3
10.8578
693.0
601.0
onnx_opset=13
Classification
ResNet34
(224, 224)
3
19.5193
691.0
602.0
onnx_opset=13
Classification
ResNet50
(224, 224)
3
29.2816
690.0
600.0
onnx_opset=13
Segmentation
PIDNet-s
(512, 512)
35
36.4498
694.0
603.0
onnx_opset=13
Detection
YOLOX-s
(640, 640)
4
95.8883
693.0
600.0
onnx_opset=13
Detection
YOLOX-m
(640, 640)
4
224.517
692.0
602.0
onnx_opset=13
Detection
YOLOX-l
(640, 640)
4
415.363
691.0
602.0
onnx_opset=13
Jetson NX
FP16
Task
Model
Input shape
Classes
Latency (ms)
GPU Memory (MB)
CPU Memory (MB)
Ramarks
Classification
EfficientFormer-l1
(224, 224)
3
3.76573
893.0
886.0
onnx_opset=13
Classification
MixNet-s
(224, 224)
3
5.13436
894.0
888.0
onnx_opset=13
Classification
MixNet-m
(224, 224)
3
6.67466
893.0
888.0
onnx_opset=13
Classification
MixNet-l
(224, 224)
3
8.16476
891.0
886.0
onnx_opset=13
Classification
MobileNetV3-small
(224, 224)
3
1.24565
881.0
886.0
onnx_opset=13
Classification
MobileNetV3-large
(224, 224)
3
1.96175
893.0
887.0
onnx_opset=13
Classification
ResNet18
(224, 224)
3
1.78444
893.0
887.0
onnx_opset=13
Classification
ResNet34
(224, 224)
3
3.28956
887.0
886.0
onnx_opset=13
Classification
ResNet50
(224, 224)
3
4.16903
893.0
887.0
onnx_opset=13
Segmentation
PIDNet-s
(512, 512)
35
6.80566
895.0
886.0
onnx_opset=13
Detection
YOLOX-s
(640, 640)
4
13.7659
892.0
887.0
onnx_opset=13
Detection
YOLOX-m
(640, 640)
4
29.2506
892.0
887.0
onnx_opset=13
Detection
YOLOX-l
(640, 640)
4
49.0844
896.0
888.0
onnx_opset=13
Jetson TX2
FP16
Task
Model
Input shape
Classes
Latency (ms)
GPU Memory (MB)
CPU Memory (MB)
Ramarks
Classification
EfficientFormer-l1
(224, 224)
3
8.02968
727.0
657.0
onnx_opset=13
Classification
MixNet-s
(224, 224)
3
10.6572
720.0
657.0
onnx_opset=13
Classification
MixNet-m
(224, 224)
3
13.8955
721.0
657.0
onnx_opset=13
Classification
MixNet-l
(224, 224)
3
17.8804
721.0
657.0
onnx_opset=13
Classification
MobileNetV3-small
(224, 224)
3
3.64664
722.0
657.0
onnx_opset=13
Classification
MobileNetV3-large
(224, 224)
3
4.96121
721.0
656.0
onnx_opset=13
Classification
ResNet18
(224, 224)
3
4.18611
720.0
656.0
onnx_opset=13
Classification
ResNet34
(224, 224)
3
7.52092
722.0
657.0
onnx_opset=13
Classification
ResNet50
(224, 224)
3
11.0185
718.0
656.0
onnx_opset=13
Segmentation
PIDNet-s
(512, 512)
35
14.3191
723.0
657.0
onnx_opset=13
Detection
YOLOX-s
(640, 640)
4
35.8665
723.0
657.0
onnx_opset=13
Detection
YOLOX-m
(640, 640)
4
82.2585
719.0
655.0
onnx_opset=13
Detection
YOLOX-l
(640, 640)
4
153.366
719.0
657.0
onnx_opset=13
Jetson Xavier
FP16
Task
Model
Input shape
Classes
Latency (ms)
GPU Memory (MB)
CPU Memory (MB)
Ramarks
Classification
EfficientFormer-l1
(224, 224)
3
2.6756
890.0
887.0
onnx_opset=13
Classification
MixNet-s
(224, 224)
3
3.68271
891.0
887.0
onnx_opset=13
Classification
MixNet-m
(224, 224)
3
4.87919
876.0
888.0
onnx_opset=13
Classification
MixNet-l
(224, 224)
3
5.89479
895.0
886.0
onnx_opset=13
Classification
MobileNetV3-small
(224, 224)
3
1.00566
896.0
886.0
onnx_opset=13
Classification
MobileNetV3-large
(224, 224)
3
1.50451
886.0
887.0
onnx_opset=13
Classification
ResNet18
(224, 224)
3
1.10724
890.0
887.0
onnx_opset=13
Classification
ResNet34
(224, 224)
3
1.99773
891.0
886.0
onnx_opset=13
Classification
ResNet50
(224, 224)
3
2.83026
892.0
888.0
onnx_opset=13
Segmentation
PIDNet-s
(512, 512)
35
4.56521
894.0
886.0
onnx_opset=13
Detection
YOLOX-s
(640, 640)
4
8.83621
891.0
888.0
onnx_opset=13
Detection
YOLOX-m
(640, 640)
4
19.1866
892.0
887.0
onnx_opset=13
Detection
YOLOX-l
(640, 640)
4
30.6859
894.0
886.0
onnx_opset=13