Skip to content

OpenVINO

The models in NetsPresso Trainer can be converted to OpenVINO format by NetsPresso's Launcher module. The converted OpenVINO model's performance can be measured on actual boards using NetsPresso's Benchmarker module. For more detailed information, please refer to NetsPresso.

Note that the latency value only measures the time for the model's computation and does not include the time on data preprocessing or postprocessing.

Intel Xeon W-2233

FP16

Task Model Input shape Classes Latency (ms) GPU Memory (MB) CPU Memory (MB) Ramarks
Classification EfficientFormer-l1 (224, 224) 3 5.65 - - onnx_opset=13
Classification MixNet-s (224, 224) 3 3.97 - - onnx_opset=13
Classification MixNet-m (224, 224) 3 6.17 - - onnx_opset=13
Classification MixNet-l (224, 224) 3 8.13 - - onnx_opset=13
Classification MobileNetV3-small (224, 224) 3 2.36 - - onnx_opset=13
Classification MobileNetV3-large (224, 224) 3 4.42 - - onnx_opset=13
Classification MovileViT-s (256, 256) 3 11.69 - - onnx_opset=13
Classification ResNet18 (224, 224) 3 5.94 - - onnx_opset=13
Classification ResNet34 (224, 224) 3 11.2 - - onnx_opset=13
Classification ResNet50 (224, 224) 3 13.34 - - onnx_opset=13
Classification ViT-tiny (224, 224) 3 6.77 - - onnx_opset=13
Segmentation PIDNet-s (512, 512) 35 17.95 - - onnx_opset=13
Segmentation SegFormet-b0 (512, 512) 35 65.45 - - onnx_opset=13
Detection YOLOX-s (640, 640) 4 44.81 - - onnx_opset=13
Detection YOLOX-m (640, 640) 4 114.02 - - onnx_opset=13
Detection YOLOX-l (640, 640) 4 227.48 - - onnx_opset=13