Automatic Compression
=====================
.. autofunction:: netspresso.compressor.__init__.ModelCompressor.automatic_compression
Details of Parameters
---------------------
Compression Ratio
~~~~~~~~~~~~~~~~~
.. note::
- As the compression ratio increases, you can get more lighter and faster compressed models, but with greater lost of accuracy.
- Therefore, it is necessary to find an appropriate ratio for your requirements. It might require a few trials and errors.
- The range of available values is as follows.
.. raw:: html
Details of Returns
------------------
.. autoclass:: netspresso.compressor.__init__.CompressedModel
:show-inheritance:
:noindex:
Example
-------
.. code-block:: python
from netspresso.compressor import ModelCompressor
compressor = ModelCompressor(email="YOUR_EMAIL", password="YOUR_PASSWORD")
compressed_model = compressor.automatic_compression(
model_id="YOUR_UPLOADED_MODEL_ID",
model_name="YOUR_COMPRESSED_MODEL_NAME",
output_path="OUTPUT_PATH", # ex) ./compressed_model.h5
compression_ratio=0.5,
)
Output
~~~~~~
.. code-block:: bash
>>> compressed_model
CompressedModel(
model_id="78f65510-1f99-4856-99d9-60902373bd1d",
model_name="YOUR_COMPRESSED_MODEL_NAME",
task="image_classification",
framework="tensorflow_keras",
input_shapes=[InputShape(batch=1, channel=3, dimension=[32, 32])],
model_size=2.9439,
flops=24.1811,
trainable_parameters=0.6933,
non_trainable_parameters=0.01,
number_of_layers=0,
compression_id="b9feccee-d69e-4074-a225-5417d41aa572",
original_model_id="YOUR_UPLOADED_MODEL_ID"
)