Automatic Compression ===================== .. autofunction:: netspresso.compressor.__init__.ModelCompressor.automatic_compression Details of Parameters --------------------- Compression Ratio ~~~~~~~~~~~~~~~~~ .. note:: - As the compression ratio increases, you can get more lighter and faster compressed models, but with greater lost of accuracy. - Therefore, it is necessary to find an appropriate ratio for your requirements. It might require a few trials and errors. - The range of available values is as follows. .. raw:: html
Details of Returns ------------------ .. autoclass:: netspresso.compressor.__init__.CompressedModel :show-inheritance: :noindex: Example ------- .. code-block:: python from netspresso.compressor import ModelCompressor compressor = ModelCompressor(email="YOUR_EMAIL", password="YOUR_PASSWORD") compressed_model = compressor.automatic_compression( model_id="YOUR_UPLOADED_MODEL_ID", model_name="YOUR_COMPRESSED_MODEL_NAME", output_path="OUTPUT_PATH", # ex) ./compressed_model.h5 compression_ratio=0.5, ) Output ~~~~~~ .. code-block:: bash >>> compressed_model CompressedModel( model_id="78f65510-1f99-4856-99d9-60902373bd1d", model_name="YOUR_COMPRESSED_MODEL_NAME", task="image_classification", framework="tensorflow_keras", input_shapes=[InputShape(batch=1, channel=3, dimension=[32, 32])], model_size=2.9439, flops=24.1811, trainable_parameters=0.6933, non_trainable_parameters=0.01, number_of_layers=0, compression_id="b9feccee-d69e-4074-a225-5417d41aa572", original_model_id="YOUR_UPLOADED_MODEL_ID" )